DENGUE IN 2025 EVOLVING EPIDEMIOLOGY, DIAGNOSTIC CHALLENGES, AND THE URGENT NEED FOR INTEGRATED VECTOR CONTROL
DOI:
https://doi.org/10.53350/Annalspakmed.1.7.1Abstract
As we enter 2025, dengue fever continues to pose one of the most formidable public health challenges across tropical and subtropical regions including Pakistan, South Asia, Southeast Asia, and parts of the Middle East 1. The epidemiological landscape of dengue has changed considerably over the past decade, driven by climate variability, rapid urbanization, human mobility, and the expanding geographic distribution of Aedes mosquitoes. This year, global surveillance networks are already reporting earlier seasonal onset, higher viral circulation, and a worrisome rise in secondary infections that predispose patients to severe dengue 2.
The burden of dengue in 2025 is not merely a continuation of past trends but a reflection of deeply rooted systemic vulnerabilities. Increased rainfall variability, unplanned urban settlements, and inadequate waste management systems have created ideal breeding environments for Aedes aegypti and Aedes albopictus 3. In high-density populations such as those in Lahore, Karachi, Rawalpindi, Dhaka, and Manila, mosquito indices have surpassed previous thresholds within the first quarter of the year. These patterns signal the potential for prolonged transmission, expanded outbreaks, and greater pressure on healthcare services 4.
References
1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nat Microbiol. 2021;6(2):161–8. doi:10.1038/s41564-020-00880-1
2. Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. Lancet. 2019;393(10169):350–63. doi:10.1016/S0140-6736(18)32560-1
3. Guzman MG, Harris E. Dengue. Lancet. 2018;385(9966):453–65. doi:10.1016/S0140-6736(14)60572-9
4. Messina JP, Brady OJ, Golding N, Kraemer MU, Wint GW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4(9):1508–15. doi:10.1038/s41564-019-0476-8
5. Simmons CP, Farrar JJ, van Vinh Chau N, Wills B. Dengue. N Engl J Med. 2020;384(2):115–26. doi:10.1056/NEJMra1803724
6. Ferguson NM, Rodríguez-Barraquer I, Dorigatti I, Mier-Y-Teran-Romero L, Laydon DJ, Cummings DA. Benefits and risks of the dengue vaccine. Sci Transl Med. 2020;12(525):eaay6348. doi:10.1126/scitranslmed.aay6348
7. Bowman LR, Donegan S, McCall PJ. Is dengue vector control deficient? A systematic review of trials assessing efficacy. PLoS Negl Trop Dis. 2019;13(8):e0007475. doi:10.1371/journal.pntd.0007475
8. Huy NT, Van Giang T, Thuy DH, Kikuchi M, Hien TT, Zamora J, et al. Factors associated with dengue shock syndrome: A systematic review and meta-analysis. PLoS Negl Trop Dis. 2021;15(4):e0009315. doi:10.1371/journal.pntd.0009315
9. Achee NL, Gould F, Perkins TA, Reiner RC, Morrison AC, Ritchie SA, et al. A critical assessment of vector control for dengue prevention. PLoS Negl Trop Dis. 2020;14(9):e0008585. doi:10.1371/journal.pntd.0008585
10. Ryan SJ, Lippi CA, Bishop-Williams KE, Johnson LR. Global expansion and redistribution of Aedes aegypti and Aedes albopictus driven by climate change. PLoS One. 2023;18(2):e0281459. doi:10.1371/journal.pone.0281459
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 NAVEED SHUJA

This work is licensed under a Creative Commons Attribution 4.0 International License.
